11 research outputs found

    Energy-Efficient Soft-Decision LDPC FEC for Long-Haul Optical Communication

    Get PDF
    We present forward error correction systems based on a low complexity LDPC decoding algorithm and randomly-structured LDPC codes. Simulation and ASIC synthesis results show throughput and net coding gain sufficient for long-haul applications, with greatly reduced energy consumption

    Low-Power 400-Gbps Soft-Decision LDPC FEC for Optical Transport Networks

    Get PDF
    We present forward error correction systems based on soft-decision low-density parity check (LDPC) codes for applications in 100–400-Gbps optical transport networks. These systems are based on the low-complexity “adaptive degeneration” decoding algorithm, which we introduce in this paper, along with randomly-structured LDPC codes with block lengths from 30 000 to 60 000 bits and overhead (OH) from 6.7% to 33%. We also construct a 3600-bit prototype LDPC code with 20% overhead, and experimentally show that it has no error floor above a bit error rate (BER) of 10−15 using a field-programmable gate array (FPGA)-based hardware emulator. The projected net coding gain at a BER of 10−15 ranges from 9.6 dB at 6.7% OH to 11.2 dB at 33% OH. We also present application-specific integrated circuit synthesis results for these decoders in 28 nm fully depleted silicon on insulator technology, which show that they are capable of 400-Gbps operation with energy consumption of under 3 pJ per information bit

    A High-Throughput Low-Power Soft Bit-Flipping LDPC Decoder in 28 nm FD-SOI

    Get PDF
    We present a low-density parity check (LDPC) decoder using the adaptive degeneration (AD) algorithm with a (3600, 3000) LDPC code, integrated in 1.85 mm^2 in 28 nm FD-SOI. With early termination and variable latency decoding, this decoder achieves an optimal energy efficiency of 0.16 pJ/bit and information throughput of 13.6 Gbps with a core supply voltage of 0.4 V. At a core supply voltage of 1.0 V, it achieves 0.58 pJ/bit energy efficiency and 181 Gbps throughput. With constant latency equal to the maximum number of iterations, it achieves optimal energy efficiency of 0.52 pJ/bit and information throughput of 7.2 Gbps at a supply voltage of 0.55 V, and 1.9 pJ/bit energy and 24 Gbps throughput at 1.0 V. The net coding gain at a bit error rate of 10^(−12) is 8.7 dB

    Energy-efficient decoding of low-density parity-check codes

    No full text
    Low-density parity-check (LDPC) codes are a type of error correcting code that are frequently used in high-performance communications systems, due to their ability to approach the theoretical limits of error correction. However, their iterative soft-decision decoding algorithms suffer from high computational complexity, energy consumption, and auxiliary circuit implementation difficulties. It is of particular interest to develop energy-efficient LDPC decoders in order to decrease cost of operation, increase battery life in portable devices, lessen environmental impact, and increase the range of applications for these powerful codes.In this dissertation, we propose four new LDPC decoder designs with the primary goal of improving energy efficiency over previous designs. First, we present a bidirectional interleaver based on transmission gates, which reduces wiring complexity and associated parasitic energy losses. Second, we present an iterative decoder design based on pulse-width modulated min-sum (PWM-MS). We demonstrate that the pulse width message format reduces switching activity, computational complexity, and energy consumption compared to other recent LDPC decoder designs. Third, wepresent decoders based on differential binary (DB) algorithms. We also propose an improved differential binary (IDB) decoding algorithm, which greatly increases throughput and reduces energy consumption compared to recent decoders ofsimilar error correction capability. Finally, we present decoders based on gear-shift algorithms, which use multiple decoding rules to minimize energy consumption. We propose gear-shift pulse-width (GSP) and IDB with GSP (IGSP) algorithms, and demonstrate that they achieve superior energy efficiency without compromising error correction performance.Les codes LDPC sont un type de code correcteur d'erreurs qui sont fréquemments utilisés dans les systèmes de communications à haute performance. Cependant, leurs algorithmes de décodage iteratifs à décisions souples souffrent d'une complexité de calcul et d'une consommation d'énergie élevée, ainsi que des difficultés auxiliaires d'implementation en circuit électronique. Il est d'intérêt particulier de mettre au point des décodeurs des codes LDPC à basse consommation d'énergie afin de diminuer le coût de l'opération, augmenter l'autonomie des appareils portables, réduire l'impact sur l'environnement, et augmenter le nombre d'applcations pour ces codes puissants.Dans ce manuscrit, nous proposons quatre conceptions nouvelles de décodeur de codes LDPC pour lesquelles le butprimaire est la réduction de la consommation d'énergie par rapport aux designs précédents. Premièrement, nous présentons un entrelaceur bidirectionnel basé sur les portes de transmission, qui réduit la complexité de filage et les pertes d'énergie parasitaires associées. Deuxièmement, nous présentons une conception de décodeur iteratif basée sur l'algorithme min-somme avec modulation de largeur d'impulsion. Nous démontrons que le format des messages de largeur d'impulsion réduit l'activité de commutation, la complexité informatique, et la consommation d'énergie par rapport aux autres conceptions de décodeur les plus récentes. Troisièmement, nous présentons des décodeurs basés sur les algorithmes binaires différentiels. Nous préposons aussi un algorithme binaire différentiel amélioré (IDB), qui augmente grandement le débit et réduit la consommation d'énergie par rapport aux décodeurs récents avec une capacité de correction d'erreurs similiaire. Finalement, nous présentons des conceptions de décodeur basées sur les algorithmesde changement de braquet, qui utilisent les règles de décodage multiples pour minimiser la consommation d'énergie. Nous proposons les algorithmes de largeur d'impulsion avec changement de braquet (GSP) et IDB avec GSP (IGSP), et démontrons qu'ils atteignent une efficacité d'énergie supérieure sans compromettre la capacité de correction d'erreurs

    Mixed-signal implementation of differential decoding using binary message passing algorithms

    No full text
    \ua9 2015 IEEE. This paper presents the mixed-signal circuit implementation of reduced complexity algorithms for decoding low-density parity check (LDPC) codes. Based on modified differential decoding using binary message passing (MDD-BMP), binary addition using discrete-time digital circuits is replaced by continuous-time analog-current summation. Potential degradation due to the mismatch between current sources, P/N strength mismatch and inverter-threshold mismatch is considered in behavioural simulation and shown to be tolerable. Area estimates suggest a reduction from 0.27 mm2 to 0.11 mm2 for the FG(273, 191) code. Finally, transistor level simulation of the FG(273, 191) code using TSMC 65 nm technology shows an efficiency of 0.56 pJ/bit

    Improved Low-Power LDPC FEC for Coherent Optical Systems

    No full text
    We propose and demonstrate a low-complexity LDPC FEC system for coherent optical applications. Implementation results show an estimated NCG of 11.0 dB with 20% overhead, 160 Gbps throughput, and energy consumption of 3.4 pJ per bit

    Low-Power 400-Gbps Soft-Decision LDPC FEC for Optical Transport Networks

    No full text

    High-Throughput Energy-Efficient LDPC Decoders Using Differential Binary Message Passing

    No full text
    corecore